Excel: Trendlines Eine der einfachsten Methoden, um einen allgemeinen Trend in Ihren Daten zu erraten, ist, eine Trendlinie zu einem Diagramm hinzuzufügen. Die Trendline ist ein bisschen ähnlich einer Zeile in einem Liniendiagramm, aber es verbindet jeden Datenpunkt nicht genau wie ein Liniendiagramm. Eine Trendlinie stellt alle Daten dar. Dies bedeutet, dass kleinere Ausnahmen oder statistische Fehler gewerkt, um Excel abzulenken, wenn es darum geht, die richtige Formel zu finden. In einigen Fällen können Sie auch die Trendlinie verwenden, um zukünftige Daten zu prognostizieren. Charts, die Trendlinien unterstützen Die Trendlinie kann zu einem 2-D-Diagramm hinzugefügt werden, wie zB Bereich, Bar, Spalte, Linie, Lager, X Y (Scatter) und Bubble. Sie können eine Trendlinie zu 3-D-, Radar-, Pie-, Area - oder Donut-Charts hinzufügen. Hinzufügen einer Trendlinie Nachdem Sie ein Diagramm erstellt haben, klicken Sie mit der rechten Maustaste auf die Datenreihe und wählen Sie Trendlinehellip hinzufügen. Ein neues Menü erscheint links neben dem Diagramm. Hier können Sie einen der Trendline-Typen auswählen, indem Sie auf eines der Optionsfelder klicken. Unterhalb der Trendlinien gibt es eine Position namens Display R-squared Wert auf Diagramm. Es zeigt Ihnen, wie eine Trendlinie an die Daten angepasst ist. Es kann Werte von 0 bis 1 erhalten. Je näher der Wert ist, desto besser geht es auf dein Diagramm. Trendline-Typen Lineare Trendlinie Diese Trendlinie wird verwendet, um eine Gerade für einfache, lineare Datensätze zu erstellen. Die Daten sind linear, wenn die Systemdatenpunkte einer Zeile entsprechen. Die lineare Trendlinie zeigt an, dass etwas mit einer konstanten Rate zunimmt oder abnimmt. Hier ist ein Beispiel für Computer-Verkäufe für jeden Monat. Logarithmische Trendlinie Die logarithmische Trendlinie ist nützlich, wenn man mit Daten umgehen muss, bei denen die Änderungsrate schnell zunimmt oder abnimmt und sich dann stabilisiert. Im Falle einer logarithmischen Trendlinie können Sie sowohl negative als auch positive Werte verwenden. Ein gutes Beispiel für eine logarithmische Trendlinie kann eine Wirtschaftskrise sein. Zuerst wird die Arbeitslosenquote immer höher, aber nach einer Weile stabilisiert sich die Situation. Polynomische Trendlinie Diese Trendlinie ist nützlich, wenn Sie mit oszillierenden Daten arbeiten - zum Beispiel, wenn Sie Gewinne und Verluste über einen großen Datensatz analysieren. Der Grad des Polynoms kann durch die Anzahl der Datenfluktuationen oder durch die Anzahl der Biegungen bestimmt werden, mit anderen Worten, die Hügel und Täler, die auf der Kurve erscheinen. Ein Auftrag 2 Polynom Trendline hat in der Regel einen Hügel oder ein Tal. Ordnung 3 hat im Allgemeinen ein oder zwei Hügel oder Täler. Ordnung 4 hat in der Regel bis zu drei. Das folgende Beispiel veranschaulicht die Beziehung zwischen Geschwindigkeit und Kraftstoffverbrauch. Power Trendline Diese Trendlinie eignet sich für Datensätze, die zum Vergleich von Messergebnissen mit einer vorgegebenen Rate verwendet werden. Zum Beispiel die Beschleunigung eines Rennwagens in Ein-Sekunden-Intervallen. Sie können eine Power-Trendlinie erstellen, wenn Ihre Daten null oder negative Werte enthalten. Exponentielle Trendlinie Die exponentielle Trendlinie ist besonders nützlich, wenn die Datenwerte steigen oder sinken. Es wird oft in den Wissenschaften verwendet. Es kann eine Bevölkerung beschreiben, die in nachfolgenden Generationen schnell wächst. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null oder negative Werte enthalten. Ein gutes Beispiel für diese Trendlinie ist der Zerfall von C-14. Wie Sie sehen können, ist dies ein perfektes Beispiel für eine exponentielle Trendlinie, weil der R-Quadrat-Wert genau ist 1. Gleitender Durchschnitt Der gleitende Durchschnitt glättet die Linien, um ein Muster oder einen Trend deutlicher zu zeigen. Excel tut es, indem man den gleitenden Durchschnitt einer bestimmten Anzahl von Werten berechnet (gesetzt durch eine Periodenoption), die standardmäßig auf 2 gesetzt ist. Wenn Sie diesen Wert erhöhen, wird der Durchschnitt aus mehr Datenpunkten berechnet, so dass die Zeile Wird noch glatter. Der gleitende Durchschnitt zeigt Trends, die sonst aufgrund von Lärm in den Daten schwer zu sehen wäre. Ein gutes Beispiel für eine praktische Anwendung dieser Trendlinie kann ein Forex-Markt sein. Moving durchschnittliche und exponentielle Glättung Modelle Als ein erster Schritt in der Bewegung über mittlere Modelle, zufällige Walk-Modelle und lineare Trend-Modelle, Nicht-Sektion Muster und Trends können mit einem extrapoliert werden Gleitender Durchschnitt oder Glättungsmodell. Die Grundannahme hinter Mittelwertbildung und Glättung von Modellen ist, dass die Zeitreihe lokal stationär mit einem langsam variierenden Mittel ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann das als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-without-drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als quotsmoothedquot Version der ursprünglichen Serie, weil kurzfristige Mittelung hat die Wirkung der Glättung der Beulen in der ursprünglichen Serie. Durch die Anpassung des Grades der Glättung (die Breite des gleitenden Durchschnitts), können wir hoffen, eine Art von optimalem Gleichgewicht zwischen der Leistung der mittleren und zufälligen Wandermodelle zu schlagen. Die einfachste Art von Mittelungsmodell ist die. Einfache (gleichgewichtete) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Durchschnitt der letzten m Beobachtungen: (Hier und anderswo verwende ich das Symbol 8220Y-hat8221 zu stehen Für eine Prognose der Zeitreihe Y, die zum frühestmöglichen früheren Datum durch ein gegebenes Modell gemacht wurde.) Dieser Durchschnitt ist in der Periode t (m1) 2 zentriert, was impliziert, dass die Schätzung des lokalen Mittels dazu neigen wird, hinter dem wahren zu liegen Wert des lokalen Mittels um etwa (m1) 2 Perioden. So sagen wir, dass das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu dem Zeitraum ist, für den die Prognose berechnet wird: Dies ist die Zeitspanne, mit der die Prognosen dazu neigen, hinter den Wendepunkten in den Daten zu liegen . Zum Beispiel, wenn Sie durchschnittlich die letzten 5 Werte sind, werden die Prognosen etwa 3 Perioden spät in Reaktion auf Wendepunkte. Beachten Sie, dass, wenn m1, das einfache gleitende Durchschnitt (SMA) - Modell entspricht dem zufälligen Walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar mit der Länge der Schätzperiode), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um die besten Quoten für die Daten zu erhalten, d. h. die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel für eine Reihe, die zufällige Schwankungen um ein langsam variierendes Mittel zeigt. Zuerst können wir versuchen, es mit einem zufälligen Spaziergang Modell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff: Das zufällige Spaziergang Modell reagiert sehr schnell auf Änderungen in der Serie, aber in diesem Fall nimmt es viel von der Quotierung in der Daten (die zufälligen Schwankungen) sowie das quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen ausprobieren, erhalten wir einen glatteren Prognosen: Der 5-fach einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Spaziergangmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zurückzukehren. (Zum Beispiel scheint ein Abschwung in der Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich nicht um einige Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie im zufälligen Spaziergang Modell. So geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während die Prognosen aus dem zufälligen Wandermodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Durchschnitt der letzten Werte. Die von Statgraphics für die Langzeitprognosen des einfachen gleitenden Durchschnittes berechneten Vertrauensgrenzen werden nicht weiter erhöht, wenn der Prognosehorizont zunimmt. Das ist offensichtlich nicht richtig Leider gibt es keine zugrundeliegende statistische Theorie, die uns sagt, wie sich die Konfidenzintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Vertrauensgrenzen für die längerfristigen Prognosen zu berechnen. Zum Beispiel könnten Sie eine Kalkulationstabelle einrichten, in der das SMA-Modell zur Vorhersage von 2 Schritten voraus, 3 Schritten voraus, etc. im historischen Datenmuster verwendet werden würde. Sie können dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addition und Subtraktion von Vielfachen der entsprechenden Standardabweichung aufbauen. Wenn wir einen 9-fach einfachen gleitenden Durchschnitt versuchen, bekommen wir noch glattere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt nun 5 Perioden ((91) 2). Wenn wir einen 19-fachen gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10: Beachten Sie, dass die Prognosen in der Tat hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welche Menge an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistik vergleicht, auch einen 3-Term-Durchschnitt: Modell C, der 5-fache gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE um einen kleinen Marge über die 3 - term und 9-term Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Zurück zum Anfang der Seite) Browns Einfache Exponential-Glättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, dass es die letzten k-Beobachtungen gleichermaßen behandelt und alle vorherigen Beobachtungen völlig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise abgezinst werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die 2. jüngste, und die 2. jüngsten sollte ein wenig mehr Gewicht als die 3. jüngsten bekommen, und bald. Das einfache exponentielle Glättungsmodell (SES) erreicht dies. Sei 945 eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. h. den lokalen Mittelwert) der Reihe repräsentiert, wie er von den Daten bis zur Gegenwart geschätzt wird. Der Wert von L zum Zeitpunkt t wird rekursiv aus seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorherigen geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf den letzten Wert steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuell geglättete Wert: Gleichermaßen können wir die nächste Prognose direkt in Bezug auf vorherige Prognosen und frühere Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose erhalten, indem man die vorherige Prognose in Richtung des vorherigen Fehlers um einen Bruchteil 945 anpasst Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Rabattfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu bedienen, wenn man das Modell auf einer Tabellenkalkulation implementiert: Es passt in eine Einzelzelle und enthält Zellreferenzen, die auf die vorherige Prognose, die vorherige Beobachtung und die Zelle hinweisen, in der der Wert von 945 gespeichert ist. Beachten Sie, dass bei 945 1 das SES-Modell einem zufälligen Walk-Modell entspricht (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, vorausgesetzt, dass der erste geglättete Wert gleich dem Mittelwert ist. (Zurück zum Anfang der Seite) Das Durchschnittsalter der Daten in der einfach-exponentiellen Glättungsprognose beträgt 1 945 gegenüber dem Zeitraum, für den die Prognose berechnet wird. (Das soll nicht offensichtlich sein, aber es kann leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher dazu, hinter den Wendepunkten um etwa 1 945 Perioden zurückzukehren. Zum Beispiel, wenn 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Verzögerung) ist die Prognose der einfachen exponentiellen Glättung (SES) der einfachen gleitenden Durchschnitts - (SMA) - Prognose etwas überlegen, da sie die jüngste Beobachtung - Es ist etwas mehr auffallend auf Veränderungen, die in der jüngsten Vergangenheit auftreten. Zum Beispiel hat ein SMA-Modell mit 9 Begriffen und einem SES-Modell mit 945 0,2 beide ein Durchschnittsalter von 5 für die Daten in ihren Prognosen, aber das SES-Modell setzt mehr Gewicht auf die letzten 3 Werte als das SMA-Modell und am Gleichzeitig ist es genau 8220forget8221 über Werte mehr als 9 Perioden alt, wie in dieser Tabelle gezeigt: Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der stufenlos variabel ist, so dass er leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Baureihe ergibt sich auf 0,2961, wie hier gezeigt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 10.2961 3.4 Perioden, was ähnlich ist wie bei einem 6-fach einfach gleitenden Durchschnitt. Die Langzeitprognosen des SES-Modells sind eine horizontale Gerade. Wie im SMA-Modell und dem zufälligen Walk-Modell ohne Wachstum. Allerdings ist zu beachten, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftig aussehenden Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das zufällige Spaziergangmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbar ist als das zufällige Spaziergangmodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So bietet die statistische Theorie der ARIMA-Modelle eine fundierte Grundlage für die Berechnung von Konfidenzintervallen für das SES-Modell. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht-seasonalen Differenz, einem MA (1) Term und keinem konstanten Term. Ansonsten bekannt als ein quotARIMA (0,1,1) Modell ohne constantquot. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Menge 1-945 im SES-Modell. Zum Beispiel, wenn man ein ARIMA (0,1,1) Modell ohne Konstante an die hier analysierte Serie passt, ergibt sich der geschätzte MA (1) Koeffizient 0,7029, was fast genau ein minus 0.2961 ist. Es ist möglich, die Annahme eines nicht-null konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Um dies zu tun, geben Sie einfach ein ARIMA-Modell mit einer nicht-seasonalen Differenz und einem MA (1) Begriff mit einer Konstante, d. h. ein ARIMA (0,1,1) Modell mit konstant. Die langfristigen Prognosen werden dann einen Trend haben, der dem durchschnittlichen Trend entspricht, der über den gesamten Schätzungszeitraum beobachtet wird. Sie können dies nicht in Verbindung mit saisonaler Anpassung tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA eingestellt ist. Allerdings können Sie einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Vorhersageverfahren verwenden. Die jeweilige Quotenquote (prozentuale Wachstumsrate) pro Periode kann als Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmus-Transformation angepasst ist, oder sie kann auf anderen, unabhängigen Informationen über langfristige Wachstumsaussichten basieren . (Zurück zum Seitenanfang) Browns Linear (dh Double) Exponentielle Glättung Die SMA Modelle und SES Modelle gehen davon aus, dass es in den Daten keinen Trend gibt (was in der Regel ok oder zumindest nicht so schlecht ist für 1- Schritt-voraus Prognosen, wenn die Daten relativ laut sind), und sie können modifiziert werden, um einen konstanten linearen Trend wie oben gezeigt zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen den Lärm auszeichnet, und wenn es notwendig ist, mehr als einen Zeitraum voraus zu prognostizieren, dann könnte auch eine Einschätzung eines lokalen Trends erfolgen Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl von Ebene als auch von Trend berechnet. Das einfachste zeitveränderliche Trendmodell ist das lineare, exponentielle Glättungsmodell von Browns, das zwei verschiedene geglättete Serien verwendet, die zu unterschiedlichen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine ausgefeiltere Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des linearen exponentiellen Glättungsmodells von Brown8217s, wie das des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von verschiedenen, aber äquivalenten Formen ausgedrückt werden. Die quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung auf die Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern Sie sich, dass unter einfachem Exponentielle Glättung, das wäre die Prognose für Y in der Periode t1.) Dann sei Squot die doppelt geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung (mit demselben 945) auf die Reihe S erhalten wird: Schließlich ist die Prognose für Y tk. Für irgendwelche kgt1 ist gegeben durch: Dies ergibt e 1 0 (d. h. Cheat ein Bit, und lassen Sie die erste Prognose gleich der tatsächlichen ersten Beobachtung) und e 2 Y 2 8211 Y 1. Nach denen Prognosen mit der obigen Gleichung erzeugt werden. Dies ergibt die gleichen angepassten Werte wie die Formel auf Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination aus exponentieller Glättung mit saisonaler Anpassung darstellt. Holt8217s Lineare Exponential-Glättung Brown8217s LES-Modell berechnet lokale Schätzungen von Level und Trend durch Glättung der aktuellen Daten, aber die Tatsache, dass es dies mit einem einzigen Glättungsparameter macht, legt eine Einschränkung auf die Datenmuster, die es passen kann: das Niveau und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem, indem es zwei Glättungskonstanten einschließt, eine für die Ebene und eine für den Trend. Zu jeder Zeit t, wie in Brown8217s Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem Wert von Y, der zum Zeitpunkt t beobachtet wurde, und den vorherigen Schätzungen des Niveaus und des Tendenzes durch zwei Gleichungen berechnet, die eine exponentielle Glättung für sie separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der Istwert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv durch Interpolation zwischen Y tshy und dessen Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1 945 berechnet. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine laute Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv durch Interpolation zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 berechnet. Mit Gewichten von 946 und 1-946: Die Interpretation der Trend-Glättungs-Konstante 946 ist analog zu der Niveau-Glättungs-Konstante 945. Modelle mit kleinen Werten von 946 gehen davon aus, dass sich der Trend nur sehr langsam über die Zeit ändert, während Modelle mit Größer 946 nehmen an, dass es sich schneller ändert. Ein Modell mit einer großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, denn Fehler in der Trendschätzung werden bei der Prognose von mehr als einer Periode sehr wichtig. (Zurück zum Seitenanfang) Die Glättungskonstanten 945 und 946 können in der üblichen Weise durch Minimierung des mittleren quadratischen Fehlers der 1-Schritt-voraus-Prognosen geschätzt werden. Wenn dies in Statgraphics geschieht, ergeben sich die Schätzungen auf 945 0.3048 und 946 0,008. Der sehr kleine Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung des Trends von einer Periode zur nächsten einnimmt, so dass dieses Modell grundsätzlich versucht, einen langfristigen Trend abzuschätzen. In Analogie zum Begriff des Durchschnittsalters der Daten, die bei der Schätzung der lokalen Ebene der Serie verwendet wird, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet wird, proportional zu 1 946, wenn auch nicht genau gleich . In diesem Fall stellt sich heraus, dass es sich um 10.006 125 handelt. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 wirklich 3 Dezimalstellen ist, aber sie ist von der gleichen allgemeinen Größenordnung wie die Stichprobengröße von 100 Dieses Modell ist durchschnittlich über eine ganze Menge Geschichte bei der Schätzung der Trend. Die prognostizierte Handlung unten zeigt, dass das LES-Modell einen geringfügig größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Auch der Schätzwert von 945 ist fast identisch mit dem, der durch die Anpassung des SES-Modells mit oder ohne Trend erhalten wird. Das ist also fast das gleiche Modell. Nun, sehen diese aus wie vernünftige Prognosen für ein Modell, das soll ein lokaler Trend schätzen Wenn Sie diese Handlung, es sieht so aus, als ob der lokale Trend hat sich nach unten am Ende der Serie Was ist passiert Die Parameter dieses Modells Wurden durch die Minimierung der quadratischen Fehler von 1-Schritt-voraus Prognosen, nicht längerfristige Prognosen geschätzt, in welchem Fall der Trend doesn8217t machen einen großen Unterschied. Wenn alles, was Sie suchen, sind 1-Schritt-vor-Fehler, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell mehr im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trend-Glättung konstant manuell anpassen, so dass es eine kürzere Grundlinie für Trendschätzung verwendet. Zum Beispiel, wenn wir uns dafür entscheiden, 946 0,1 zu setzen, dann ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so vermitteln. Hier8217s, was die Prognose Handlung aussieht, wenn wir 946 0,1 gesetzt, während halten 945 0,3. Das sieht für diese Serie intuitiv vernünftig aus, obwohl es wahrscheinlich gefährlich ist, diesen Trend in Zukunft mehr als 10 Perioden zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber es werden ähnliche Ergebnisse (mit etwas mehr oder weniger Ansprechverhalten) mit 0,5 und 0,2 erhalten. (A) Holts linear exp. Glättung mit alpha 0.3048 und beta 0.008 (B) Holts linear exp. Glättung mit alpha 0,3 und beta 0,1 (C) Einfache exponentielle Glättung mit alpha 0,5 (D) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0.2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl treffen können Von 1-Schritt-voraus Prognosefehler innerhalb der Datenprobe Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir stark davon überzeugt sind, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zu stützen, so können wir einen Fall für das LES-Modell mit 945 0,3 und 946 0,1 machen. Wenn wir agnostisch darüber sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein und würde auch mehr Mittelwert der Prognosen für die nächsten 5 oder 10 Perioden geben. (Rückkehr nach oben) Welche Art von Trend-Extrapolation ist am besten: horizontal oder linear Empirische Evidenz deutet darauf hin, dass, wenn die Daten bereits für die Inflation angepasst wurden (falls erforderlich), dann kann es unklug sein, kurzfristig linear zu extrapolieren Trends sehr weit in die Zukunft. Trends, die heute deutlich werden, können in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, erhöhter Konkurrenz und zyklischer Abschwünge oder Aufschwünge in einer Branche nachlassen. Aus diesem Grund führt eine einfache, exponentielle Glättung oftmals zu einem besseren Out-of-Sample, als es sonst zu erwarten wäre, trotz der quadratischen horizontalen Trend-Extrapolation. Gedämpfte Trendmodifikationen des linearen exponentiellen Glättungsmodells werden auch in der Praxis häufig verwendet, um eine Note des Konservatismus in seine Trendprojektionen einzuführen. Das LES-Modell mit gedämpftem Trend kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA (1,1,2) - Modells, implementiert werden. Es ist möglich, Konfidenzintervalle um Langzeitprognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem sie sie als Sonderfälle von ARIMA-Modellen betrachten. (Vorsicht: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt von (i) dem RMS-Fehler des Modells ab, (ii) der Art der Glättung (einfach oder linear) (iii) der Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der voraussichtlichen Perioden, die Sie prognostizieren. Im Allgemeinen werden die Intervalle schneller ausgebreitet als 945 im SES-Modell größer und sie breiten sich viel schneller aus, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im ARIMA-Modellteil der Notizen weiter erörtert. (Zurück zum Seitenanfang.) Trendlinien Eine Trendlinie (verkürzt zur Trendlinie an anderer Stelle auf dieser Website) ist einfach ein Impulsindikator. Es misst die Erhöhung des Aktienkurses im Laufe der Zeit und warnt Sie auf jede Beschleunigung oder Verzögerung des Trends. Der Unterschied zwischen Trendlinien und anderen Impulsindikatoren besteht darin, dass man einen Supercomputer (das menschliche Gehirn) benutzt, um den Trend visuell zu identifizieren, anstatt eine auf Ihrem PC berechnete vereinfachte Formel. Zeichnen Sie Trendlinien durch die Tiefen eines Aufwärtstrends und durch die Höhen eines Down-Trends Auf Langzeit-Charts zeichnen Sie Trendlinien durch Schlusskurse Benutzen Sie entweder normale oder log-Skala-Charts, aber beachten Sie ihre jeweiligen Schwächen Trendlinien müssen von at respektiert werden Mindestens drei Tiefs (oder Höhen in einem Down-Trend), wenn es zweimal respektiert wird, ist die Trendlinie noch nicht bestätigt Trendlines sollten sich nicht schneiden (abschneiden) Preis an jedem Punkt auf dem Diagramm, wenn verlängert. Trendlinien prognostizieren keine Unterstützung und Widerstand. Stütze und Widerstand laufen waagerecht nicht schräg. Zur Erläuterung der Grundlagen siehe Support und Resistance. Viele Händler verwechseln die beiden Konzepte: Die untere Linie in einem Trendkanal wird oft als die unterstützende Trendlinie bezeichnet. Auf einem kurzfristigen Chart (6 Monate oder weniger), zeichnen Trendlinien durch die Tiefs während eines Aufwärtstrends. Und durch Höhen bei einem Down-Trend. Auf einem langfristigen Chart sind die mit dem Schlusskurs gezeichneten Trendlinien effektiver. Die untere Trendlinie wurde nach täglichen Tiefständen gezeichnet, um diesen Punkt zu verdeutlichen. Es gab viel Diskussion über das Chart Forum im Laufe der Jahre, ob Trendlinien auf Log-Skala oder normale Maßstabsdiagramme gezeichnet werden sollten. Der Fall für die Log-Skala wurde von Alsoran als: Broker und Analysten-Diagramm im Log-Modus zusammengefasst. Sie beraten institutionelle Kunden, deren Auftragsfluss einen deutlichen Einfluss auf die Preisentwicklung und den Trend hat. Ihr Ratschlag ist stark von Pausen und Preisverweigerungen bei wichtigen Trendlinien und Kanälen beeinflusst. Diese basieren auf logarithmischen Diagrammen. Logarithmische Trendlinien sind daher wichtiger. Der Fall für normale Skala (lineare) Trendlinien: Die meisten Autoren verwenden lineare Charts: Stan Weinstein, Alexander Elder, Chris Tate und Daryl Guppy. Es ist fraglich, ob die meisten Analysten und Broker Log-Scale-Charts verwenden. Viele Handelsautoren (ua Stan Weinstein und Chris Tate) sind ehemalige Analytiker oder Broker und verwenden lineare Charts. Meiner Meinung nach sprechen die beiden Seiten über verschiedene Zeitrahmen. Normale Maßstabsdiagramme vergleichen Preis gegen Zeit. Sie würden die Geschwindigkeit eines Autos in ähnlicher Weise darstellen: Abstand (y) über die Zeit (x). Wenn ein Auto mit einer konstanten Geschwindigkeit fährt, ist der Graph eine gerade Linie. Wenn es gestoppt wird, wird die Linie horizontal. Bei Beschleunigung zeigt das Diagramm eine Kurve an. Log-Charts sind nicht entworfen, um Geschwindigkeit zu messen, sie messen Beschleunigung. Die Wachstumsrate der Aktienkurse. Eine konstante Geschwindigkeit wird als Abflachungskurve dargestellt, wobei eine konstante Wachstumsrate (Beschleunigung) als Gerade dargestellt wird. Im Kurzzeit-Semester konzentrieren wir uns auf die Geschwindigkeit: Ist diese Woche Preiserhöhung so gut wie in der vergangenen Woche Die Zeitspanne ist zu kurz, um sich mit zusammengesetzten Wachstumsraten zu befassen. Die meisten Institutionen halten die Bestände langfristig und beschäftigen sich nicht mit kurzfristigen Schwankungen. Sie wollen die jährliche zusammengesetzte Wachstumsrate ein ganz anderes Konzept aus kurzfristiger Geschwindigkeit kennen. Bei kurzfristigen und mittelfristigen Charts (3 Jahre oder weniger) empfehlen wir Ihnen, die normale Skala zu verwenden. Für Langzeit-Charts (mehr als 3 Jahre), verwenden Sie entweder normale Skala (linear) oder Log-Charts, aber bewusst sein, ihre jeweiligen Stärken und Schwächen. Persönlich ziehe ich es vor, Trendlinien auf lineare Charts zu zeichnen, wenn wir nicht einen 10- oder 20-jährigen Zeitraum betrachten. Lineare Trendlinien scheinen im Laufe der Zeit zu beschleunigen, wenn eine Aktie mit einer konstanten Zinsrate wächst. Logarithmische Trendlinien zeigen die Wachstumsrate (oder Abnahme) über sehr lange Zeiträume genauer hin. Lineare Trendlinien scheinen sich im Laufe der Zeit zu verlangsamen, wenn eine Aktie mit einer konstanten (negativen) Wachstumsrate abfällt. Logarithmische Trendlinien zeigen die Abschwächungsrate genauer an. Logarithmische Trendlinien tendieren dazu, beschleunigte Trends in der Kurzfristigkeit zu verbergen. Wir reden über die Beschleunigung von Trends und nicht auf eine stetige Wachstumsrate. Beschleunigung der Trends in der Regel am Ende in Blow-offs (oder kathartischen Sell-offs in einem Down-Trend) gefolgt von einer scharfen Umkehrung. Auf einem 3-Jahres-Chart zeigt die normale Skala den beschleunigenden Trend. Während die Log-Skala dazu neigt, die Beschleunigung zu tarnen (flach). Werfen wir einen Blick auf einige der Grundlagen im Detail. Was meinen wir mit Respekt. Der Preis sollte sich in unmittelbarer Nähe der Trendlinie umkehren, aber nicht überqueren. Nehmen Sie die Allegheny Energy Chart, von früher als Beispiel: Was bedeutet in der Nähe bedeutet, dass der Preis nicht die Trendlinie berühren muss. Jede Umkehrung innerhalb einer angemessenen Entfernung ist gut genug. Auf der 3-Jahres-Chart unten sehen Sie, dass eine Anzahl von Tranchen kurz von der Trendlinie sind, aber in der Nähe genügend Nähe, dass man sagen kann, dass sie die Trendlinie respektiert haben. Kurzfristige Charts zeigen oft Kerzen mit langen Schwänzen oder Schatten an, wenn Stopps ausgeschüttelt werden oder Händler in einer falschen Pause gefangen werden, die von Marktfachleuten initiiert wird. Wenn die tägliche Hoch - oder Tiefstiege einer offensichtlichen Trendlinie entgegenkommt - ignorieren Sie sie, aber schneiden Sie nicht die Schlusskurse. Der Handel wurde auf der obigen Tabelle für zwei Tage im Februar suspendiert. Längere Suspendierungsperioden können Trendlinien verzerren und die Ergebnisse sollten mit Vorsicht behandelt werden. Vermeiden Sie schneidende Schlusskurs außer auf einem Langzeitdiagramm, wenn es eine Spitze gibt, die nicht dem Gesamtmuster passt. Und nur unter außergewöhnlichen Umständen: Der Trend muss wirklich offensichtlich sein. Trendline-Pausen signalisieren eine Veränderung des Impulses nicht unbedingt eine Trendänderung. Trendline-Pausen sehen sich oft mit Nachsicht aus, aber man wird normalerweise feststellen, dass die dargestellte Trendlinie nicht die erste war: mehrere Trendlinien können gebrochen werden, bevor es eine Trendumkehr gibt. Wenn der Handel mit kurzfristigen oder Swing-Trading, handeln auf Trendline Pausen, wenn Sie Preisbestätigung (oder Bestätigung von einem anderen Indikator) erhalten, wie Sie für jede andere Impulsindikator. Langfristig sind Trendlinien ein effektives Instrument für die Beendigung von Trends, die in einen Abblase (oder Down-Trends, die in einen kathartischen Sell-off versetzt haben) verspielt haben. Eine schnell beschleunigende Tendenz oder Abblasung wird normalerweise durch mindestens 3 beschleunigende Trendlinien identifiziert, jeweils mit einem deutlich steileren Gradienten als der vorherige. Yahoo zeigt ein klassisches Beispiel in 19992000. Normale Trendline-Pausen auf Langzeit-Charts sollten als Warnung statt als Trend-Umkehr-Signal behandelt werden. Die erste Trendlinie, die nach einem umgekehrten Kopf und Schultern gezogen wird, ist gebrochen bei 1 signalisiert, dass die Dynamik verlangsamt wird. Die Preistests stützen sich um 8.00 Uhr mehrmals, bevor sie den Aufwärtstrend wieder aufnehmen und eine zweite Trendlinie um 2 festlegen. Wenn der Aufwärtstrend weiter geht, können wir ziehen Eine dritte Trendlinie: Durch den Tiefstand um 8.00 und den Tiefstand um 14.00 Uhr wurde die Trendlinie 2 oben noch bestätigt
No comments:
Post a Comment